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ABSTRACT

There is increasing evidence suggesting that cyclins, cyclin-dependent 
kinases (CDKs), and cyclin-dependent kinase inhibitors (CDIs) either are 
themselves targets for genetic change in cancer or are disrupted secondarily 
by other oncogenic events. Cyclin D1 and p27KIP1 are two important regulators 
at the G1/S checkpoint. Cyclin D1 is an oncogene of cell cycle regulation with 
positive effect. Normally, cyclin D1 at G1 is constant or at a very low level and 
its excessive expression may be associated with the disordered proliferation 
of cells leading to malignant change. On the other hand, p27KIP1 is an anti-
oncogene for cell cycle regulation, which functions as a negative regulator. 
Under the regulation of TGF-β, p27KIP1 inhibits the activity of oncogenes and 
controls the transition of the G1/S phase mainly by the interaction with CDK 
and CDK-Cyclin in order to inhibit cell proliferation and give cells opportunities 
to repair DNA. In addition, p27KIP1 not only acts as CDK inhibitor, but also 
promotes cell differentiation and induces the apoptosis of cells. In this article 
we review studies that have explored the effects of cyclin D1 and P27KIP1 on 
cancer progression and dysplasia with a specific focus on oral dysplasia and 
oral squamous cell carcinoma (OSCC). We also aim to shed some light on the 
different means of evaluating the interaction between Cyclin D1 and P27KIP1 as 
well as the immunohistochemical reactions associated with different forms of 
cyclin D1.

CELL CYCLE
The cell cycle is the series of events that are required to create 

two daughter cells from a progenitor cell. The cell division cycle 
consists of four phases, i.e. G1, S, G2, and M. A cell that is not in the 
cell cycle is in a quiescent state named G0. G1 is the interval before 
DNA replication, S is the DNA replication phase, G2 is the interval 
after DNA replication, M is the mitotic phase. Progression through 
the cell cycle is governed by a family of cyclin-dependent kinases 
(CDKs), the activity of which is regulated by phosphorylation1, 
activated by binding of cyclins2, and inhibited by CDK inhibitors3.

The orderly progression through the different phases is assured 
by proteins that regulate critical checkpoints. Several checkpoints 
have been identified such as the late G1 phase restriction point, 
the G1/S phase transition, and the G2/M phase transition. These 
checkpoints normally verify that the preceding events have been 
completed before progressing to the next monitor completion of 
DNA replication and produce signals that interrupt the cell cycle in 
the event of an error or damage to the genome. Abnormal functioning 
of checkpoints, such as incapacity in detecting damaged DNA, may 
play a significant role in tumour progression by permitting cells to 
progress through the cell cycle with damaged or abnormal DNA4. 
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The orderly progression of cells through the cell cycle is 
carefully orchestrated by CDK after they bind to a group 
of proteins called cyclins5. The cyclin/CDK complexes 
form heterodimers that phosphorylate many proteins 
involved in major cell cycle events6. The activity of cyclin/
CDK complexes is modulated by the phosphorylation of 
threonine residues on the CDK, and by interactions with 
cyclin dependent kinase inhibitors (CDI). The proper and 
timely action of all these mechanisms is the basis of normal 
function, and consequently, dysregulation at many levels of 
the cell cycle has been implicated in tumourogenesis.

CYCLINS AND CYCLIN D1
Two major classes of cyclins are recognized according 

to the phase of action and to their pattern of degradation; 
these are the mitotic cyclins (Cyclin A, B) and the G1 cyclins 
(Cyclin A, D, E)7. Mitotic cyclins are essential for the control 
of the cell cycle at the G2/M transition (mitosis). They 
usually accumulate steadily during G2 and are abruptly 
destroyed as cell exit from mitosis. On the other hand, the 
G1 cyclins are essential for the control of the cell cycle at 
the G1/S transition. For example, cyclin A/CDK2 complex 
is active in S phase. Cyclin D/CDK4, cyclin D/CDK6, and 
cyclin E/CDK2 regulate the transition from G1 to S phase7,8.

There are three isoforms of cyclin D (Cyclin D1, D2, 
D3) in humans; cyclin D1 is perhaps the most studied 
D-type cyclin in human cancers9. In mice, cyclin D1 is
located on chromosome 7. Human cyclin D1 is localized
at chromosome 11q1310. It is a nuclear protein that has
been shown to be a key regulator of G1-S phase transition,
and elevated levels of cyclin D1 induce apoptosis11. Cyclin
D1 protein binds and activates CDK4 and CDK6, leading
to phosphorylation of retinoblastoma protein (RB – a
tumour suppressor protein) that results in release of
transcriptional activator E2F, leading to transcription and
activation of proteins associated with passage through the
G1 check point and progression into the S phase9.

A review article states that cyclin D1 also acts as 
transcriptional modulator by regulating the activity of 
several transcription factors and histone deacetylase12. 
This function is independent of the CDK4 activity. Cyclin 
D1 protein is unstable with a short half-life, about 24 
minutes13,14. It is degraded mainly by the 26S proteasome 
in an ubiquitin-dependent pathway13. However, cyclin 
D1 is an important proto-oncogene. Overexpression of 
cyclin D1 leads to shortening of the G1 phase and to less 
dependency on exogenous mitogens, resulting in abnormal 
cell proliferation that in turn may favour the occurrence of 
additional genetic lesions15.

Cyclin D1 is reported as being overexpressed or 
amplified in a number of primary human cancers 
supporting its role as an oncogene. In many tumours, 
genetic alterations affecting the cyclin D1 gene frequently 

result in overexpression of cyclin D1 protein. Several 
studies have shown overexpression of cyclin D1 protein 
is associated with at least half of all invasive breast 
cancers16-18. Many studies of mantle cell lymphoma 
have demonstrated increased activity in cyclin D119-21. 
It has been shown that overexpression of cyclin D1 by 
lymphocytes in the mantle zone impairs the capacity of 
these cells to exit the cell cycle and to differentiate into 
mature plasma cells22. Studies of oesophageal cancer also 
showed amplification and overexpression of cyclin D1 
protein in 30% of the cases23,24. Amplification and increase 
expression of cyclin D1 protein have been observed in 
10% of hepatocellular carcinoma25,26. Overexpression of 
cyclin D1 protein has also been associated with decreased 
survival and worse prognosis in different types of cancer 
including oesophageal squamous cell carcinoma, breast 
carcinoma and colonic adenocarcinoma27-29. 

Furthermore, several studies have demonstrated that 
increased levels of cyclin D1 mRNA may be associated with 
decreased survival rate of patients with head and neck 
cancers30-33. These observations suggest that cyclin D1 
might play an important role in malignant transformation 
and disease progression. In addition to the above, over 
expression of cyclin D1 protein may be the consequence 
of gene rearrangement. Therefore, amplification of this 
gene often appears in malignant lesions34. Amplification 
of cyclin D1 gene has been demonstrated in 17%-55% of 
head and neck squamous cell carcinoma (HNSCC) in several 
studies32,35,36. Over expression of cyclin D1 protein has also 
been shown in 21%-64% of HNSCC and associated with 
a poor prognosis, more frequent recurrence, and shorter 
time to recurrence30, 37-40. Moreover, overexpression has 
been shown to be associated with lymph node metastasis38. 
Little is known of the frequency and the timing of this 
change in oral epithelial dysplasia41. Overexpression of 
cyclin D1 in oral epithelial dysplasia has been reported 
in some studies41-43. There are some studies on cyclin D1 
degradation in vitro by a number of therapeutic agents. 
They showed that induction of cyclin D1 degradation might 
offer a useful avenue for therapeutic intervention44-49. A 
summary of studies (1990-2018) on expression of cyclin 
D1 and CDKs in normal tissues, oral epithelial dysplasia 
and squamous cell carcinoma as well as other different 
types of cancer is shown in Table 1.

CYCLIN DEPENDENT KINASES and P27KIP1

Cyclin-dependent kinases (CDKs) are a family of protein 
kinases that are involved in regulating the cell cycle. Their 
activity is controlled by a complex network of regulatory 
subunits and phosphorylation events. In the cell, these 
regulatory mechanisms generate an interlinked series 
of CDK oscillators that trigger the events of cell division. 
Therefore, they may be considered as the engines that 
drive the events of the cell cycle50. There are at least nine 
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different cyclin-dependent kinases in eukaryotic cells, 
four of which, CDK1, 2, 3, and 4, have been shown to play 
an important role in the regulation of the eukaryotic cell 
division cycle and have also been suggested in the control 
of gene transcription and other processes50.

Cyclin-dependent kinase inhibitors (CDIs) are proteins 
that inhibit cyclin-dependent kinase. Cell cycle progression 
is negatively controlled by CDIs. They are involved in the 
cell cycle arrest at the G1 phase. Two families of CDIs 
negatively regulate CDK activities and mediate cell cycle 
arrest following growth inhibitory stimuli51. The INhibitors 
of CDK4, also known as the INK4 family members involve 
p15INK4B, p16INK4A, p18INK4C, and p19INK4D. They specifically 
inhibit cyclin D1 associated kinase52,53. Members of the 
kinase inhibitor protein (KIP) family involve P21CIP1 or 
CDK-interacting protein 1, also known asP21WAF1, P21SDI1 
or senescence DNA synthesis inhibitor 1, P27KIP1 or kinase 
inhibitor protein 1, and P57KIP2 or kinase inhibitor protein 
2. It has been suggested that they bind and inhibit cyclin D/
CDK4, cyclin E/CDK2 and cyclin A/CDK2 complexes51. P21
is a potent CDI. It is a major element in cell cycle control
and it is mainly regulated at the transcriptional level. It
binds to and inhibits the activity of cyclin E/CDK2, cyclin
B/CDK1 and cyclin D/CDK4/6 complexes and thus acts as a 
regulator of cell cycle progression at G1/S phase54.

P27KIP1 is a cyclin-dependent kinase inhibitor and 
a tumour suppressor that regulates G0 to S phase 
transitions55. It has been identified as an inhibitor in cells 
arrested by transforming growth factor – β (TGF-β) and is 
regulated by growth inhibitory cytokines and by contact 
inhibition56-58. P27KIP1 protein is strongly expressed in 
non-proliferating cells and plays an important role in the 
regulation of both quiescence and G1 progression59.

P27KIP1’s inhibitory activity is mainly controlled by its 
concentration, subcellular localization and phosphorylation 
status55. The levels and activity of p27KIP1 protein increase 
in response to a number of factors, including cell density, 
differentiation signals, following loss of adhesion to the 
extracellular matrix, and in response to growth inhibitory 
signaling by TGF-β or the drug lovastatin60-63. P27KIP1 is not 
a classic tumour suppressor like P53, but loss of p27KIP1 
protein could result in resistance to growth inhibitory 
factors, deregulation of cell proliferation, and oncogenic 
change64. 

In quiescent normal epithelia of breast, prostate, ovary, 
lung and other sites, p27KIP1 protein is expressed at high 
level, and loss or reduction of the level of this protein may 
be seen in carcinomas59. When both a non-invasive and 
invasive component coexist in the tumour, loss of p27KIP1 
protein is detected in both carcinoma in situ and invasive 
tumour, suggesting that events leading to deregulation 
of p27KIP1 protein may precede invasion59. For example, 

p27KIP1 protein is reduced in benign prostatic hypertrophy, 
a hyperplastic premalignant prostatic neoplasm65-67. Study 
of prostate carcinoma also showed variable degrees of 
reduction in p27KIP1 staining was frequently observed in 
the prostatic intraepithelial neoplasia adjacent to invasive 
carcinoma66. Studies of breast cancer also have similar 
results; p27KIP1 protein is reduced in premalignant and 
non-invasive malignant lesions, including ductal carcinoma 
in situ of the breast68-71. In addition, a comparison of p27KIP1 
protein levels in primary colon carcinoma and metastatic 
tumour demonstrated a reduction of p27KIP1 staining in 
the metastatic tumour72,73. Therefore, reduction in p27KIP1 
protein level may contribute to cancer progression in the 
transitions from carcinoma in situ to invasive tumour, and 
from localized primary tumour to metastatic tumour74.

Moreover, decreased levels of p27KIP1 protein may 
be related to high tumour grade and stage in human 
colorectal64, gastric75, breast76, prostate66,77 and other 
cancers. Reduction of p27KIP1 protein in tumours correlates 
significantly with decreased survival in colorectal78, 
gastric79,80, breast76,81,82 and esophageal83 squamous cell 
carcinoma patients, among others. These studies have 
suggested that p27KIP1 plays an important role in tumour 
suppression. In fact, identification of the p27KIP1 proteolysis 
pathways has opened new avenues for therapeutic 
intervention in cancer84. A summary of studies (1990-2018) 
on expression of cyclin D1 and CDKs in normal tissues, oral 
epithelial dysplasia and squamous cell carcinoma as well as 
other different types of cancer is shown in Table 1.

IMMUNOHISTOCHEMICAL EVALUATION OF 
THE INTERACTION BETWEEN CYCLIN D1 AND 
P27KIP1

In most studies, the immunohistochemical reactivity 
for cyclin D1 and p27KIP1 was evaluated on the basis 
of presence or absence of nuclear and/or cytoplasmic 
staining90,104,107-109. However, Gillett et al. excluded cyclin D1 
cytoplasmic staining alone in their cases and considered 
it as negative110. It has been shown that cyclin D1 plays 
an important role in cell proliferation and differentiation 
and can be transported between nuclear and cytoplasmic 
compartments via nuclear pores during different phases of 
the cell cycle111.

Most of the previous studies suggest cyclin D1 is a 
nuclear protein112-114. However, results from Guan et al., 
2018104 (strong nuclear and cytoplasmic staining) imply 
that for proteins such as cyclin D1, it is more accurate to 
apply to nuclear/cytoplasmic distribution ratio than a 
single cellular localization. Moreover, the capacity of the 
cell to direct nuclear import and export during cell cycle 
suggested that movement of cyclin D1 must be considered 
bi-directional115. The redistribution of cyclin D1 protein 
correlates with its phosphorylation on Thr-286 by 
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Bibliographic 
citation Study type Number of patients Case/setting Marker 

protein Effect size

(Michalides et al., 
1995)30

Retrospective case-
control pathology 

slides

47 Head and Neck 
Squamous Cell 

Carcinomas

Random selection of 
cases. Single centre 
study. Netherlands

Cyclin D1

Overexpression of cyclin D1 
associated with poor prognosis 

and a shortened overall survival of 
these patients (P=0.0095).

(Akervall et al., 
1997)37

Retrospective case 
control pathology 

slides

75 Head and Neck 
Squamous Cell 

Carcinomas

Random selection. 
Matched for site. Dual 

centre. Sweden and 
Netherlands

Cyclin D1
Patients with tumors strongly 

positive for Cyclin D1 had poorer 
survival (P=0.047).

(Xu et al., 1998)85
Retrospective case 
control pathology 

slides

34 Oral Squamous 
Cell Carcinomas
2 Oral Epithelial 

Dysplasia

Random selection. 
Matched for site and 

Grade. Dual centre. Texas 
and Argentina

P53, Cyclin 
D1, Rb and 

H-ras

High frequency (41%) of Cyclin D1 
Overexpression

(Castle et al., 
1999)42

Retrospective case 
control pathology 

slides

25 Oral Dysplasia
47 Oral Squamous 

Cell Carcinomas

Random selection 
Matched for site, grade, 

age, gender. Single 
centre. Florida.

P53 and 
Cyclin D1

Overexpression of Cyclin D1 was 
not significant different between 

2 age groups studies either for 
dysplasia or carcinomas.

(Bova et al., 
1999)38

Retrospective case 
control pathology 

slides

147 Carcinoma of 
the Anterior Tongue

Random selection 
Matched for site, grade, 

age, gender. Single 
centre. Australia.

Cyclin D1 
and P16INK4A

Overexpression of Cyclin D1 
occurred in 68% of tumors and was 

associated with increased lymph 
node stage (P=0.014), increased 

tumor grade (P=0.003), and 
reduced disease-free (P=0.006) and 

overall (P=0.01).

(Lam et al., 
2000)86

Retrospective case 
control pathology 

slides

56 Oral Squamous 
Cell Carcinomas

Random selection 
Matched for site, grade, 

age, gender. Single 
centre. Hong Kong.

P53 and 
Cyclin D1

Cyclin D1 expression was found 
in 63% of Oral Squamous Cell 

Carcinomas and was more 
frequently positive in high-grade 

lesions (P=0.019)

(Nakahara et al., 
2000)87

Retrospective case 
control pathology 

slides

78 Oral Squamous 
Cell Carcinomas
46 Leukoplakia

20 Normal mucosa

Random selection 
Matched for site, grade, 

age, gender. Single 
centre. Japan.

Cyclin D1 
and P16INK4A

The Overexpression of Cyclin 
D1 was not Observed in normal 

mucosa and was observed in 35.9% 
of Squamous Cell Carcinomas

(Mineta et al., 
2000)39

Retrospective case 
control pathology 

slides

94 Tongue 
Squamous Cell 

Carcinomas

Random selection 
Matched for Age, 

Gender, Smoking Alcohol 
and grade. Dual centre. 

Japan and Sweden.

Cyclin D1

19% of patients showed Cyclin D1 
overexpression. The 5- year survival 
rate of high Cyclin expressors was 

39% (P=0.04).

(Rousseau et al., 
2001)41

Retrospective case 
control pathology 

slides

20 Normal Mucosa, 
22 Mild Epithelial 

Dysplasia, 20 
Moderate Epithelial 

Dysplasia, 17 
Severe Epithelial 
Dysplasia and 25 

Oral Squamous Cell 
Carcinoma

Random selection 
Matched for grade. Dual 
centre. Canada and USA.

Cyclin D1

Overexpression of Cyclin D1 was 
identified in 29% of mild, 47% 
moderate, 29% of severe Oral 

epithelial dysplasia. There were 
statistically significant correlations 

identified between gene and 
protein levels in all categories of 

disease.

(Ronaldo et al., 
2001)88

Retrospective case 
control pathology 

slides

112 Carcinoma of 
the Anterior Tongue

Random selection. 
Matched for site, grade, 

age, gender. Single 
centre. Australia.

Cyclin D1
Overexpression of cyclin D1 (65% 
of the cases) associated with poor 

prognosis.

(Sathyan et al., 
2006)89

Retrospective case 
control pathology 

slides

147 Buccal 
Squamous Cell 

Carcinoma and 94 
Tongue Squamous 

Cell Carcinoma

Random selection. 
Matched for site, grade, 

age, gender. Single 
centre. India

P53, Rb, P16, 
Cyclin D1, 
CDK4 and 

PCNA

Among the biological markers, 
the Overexpression of CyclinD1 

(P=0.007) showed significant 
association with shorter disease-

free survival in these cases.

Table 1: Illustrates a summary of studies (1990-2018) that investigated the expression of cyclin D1 and CDKs in normal tissues, oral epithelial 
dysplasia and squamous cell carcinoma as well as other different types of cancer.
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(Kövesi & Szende, 
2006)90

Retrospective case 
control pathology 

slides
18 Oral Leukoplakia

Random selection. 
Matched for smoking, 

alcohol, grade, age and 
gender. Single centre. 

Hungary

Cyclin D1, 
P27KIP1 and 

P63

The severity of dysplasia showed 
positive correlation with the 

severity of Leukoplasia

(Matsushima et 
al., 2006) 91

Retrospective case 
control pathology 

slides

84 Nasopahrungeal 
Carcinoma

28 Mild Epithelial 
Dysplasia, 28 Mild 

Moderate Epithelial 
Dysplasia, and 28 

Moderate Epithelial 
Dysplasia

Random selection. 
Matched for grade. 

Single centre. Japan.

Cyclin D1 and 
Cyclin B1

The expression of Cyclin D1 
correlates with the grade of 

Epithelial Dysplasia.

(Angadi & 
Krishnapillai, 

2007)92

Retrospective case 
control pathology 

slides

71 cases of 
Oral Squamous 
Cell Carcinoma 
and Verrucous 

Carcinoma

Random selection. 
Matched for grade. 
Single centre. India.

Cyclin D1

Overexpression of Cyclin D1 
significantly correlated with lack of 
differentiation in these malignant 

epithelial neoplasms.

(Huang et al., 
2012)40

Retrospective case 
control pathology 

slides

264 Oral Squamous 
Cell Carcinoma

Random selection. Single 
Centre, Taiwan Cyclin D1

Overexpression of cyclin D1 was 
found in (36.7%) OSCCs and was 

associated with poor clinical 
outcomes.

(Uma et al., 
2012)93

Retrospective case 
control pathology 

slides

20 Oral Squamous 
Cell Carcinoma and 
10 Normal Mucosa

Random selection. Single 
Centre, India

P53 and 
Cyclin D1

Increased Cyclin D1 expression 
was seen in Oral Squamous Cell 
Carcinoma when compared to 

the normal mucosa and a positive 
correlation was seen in increased 

Cyclin D1 in OSCC.

(Liu et al., 2013)94
Retrospective case 
control pathology 

slides

130 Primary 
Nasopharyngeal 

Carcinoma

Random selection. Single 
Centre, China P27 KIP1

Nuclear expression of p27 KIP1 
was inversely correlated with T 
classification and clinical stage. 

Patients with nuclear p27 KIP1 
expression had better overall 

survival rates.

(Li et al., 2014) 95 Meta-analysis of 
observational studies

4150 cases of 
colorectal cancer 
from 22 studies

Comprehensive literature 
search for relevant 
studies published 

was performed using 
PubMed, EMBASE, and 

ISI Web of Science.

Cyclin D1

Cyclin D1 overexpression is an 
unfavorable prognostic factor for 

CRC. Cyclin D1 overexpression 
might be associated with poor 

clinical outcome and some 
clinicopathological factors such as 

age, T category, N category and 
distant metastasis in CRC patients.

(Pereira et al., 
2014) 96

Retrospective case 
control pathology 

slides

85 Prostate 
Carcinoma 10 

Normal prostate 
tissue

Random selection. Single 
Centre, Brazil. Cyclin D1

High cyclin D1 expression could 
be a potential marker for tumor 

aggressiveness.

(Ravikumar and 
Ananthamurthy, 

2014) 97

Retrospective case 
control pathology 

slides

35 Ducal Carcinoma 
of the breast

Random selection. Single 
Centre, India. Cyclin D1 Cyclin D1 expression was seen in 

67.5% of ductal carcinoma 

(Moreno-Galido 
et al., 2014)98

Retrospective case 
control pathology 

slides

41 Primary 
Laryngeal / 

Hypopharyngeal 
Squamous Cell 

Carcinima 

Random selection. 
Matched for induction 

chemotherapy 
treatment. Single Centre, 

Spain.

EGFR, p53, 
Cyclin D1, 
p16, p21, 
p27 KIP1, 

p-AKT, HIF-
1α, Caspase
3 and BCL2

Positive expression of p27 KIP1 and 
BCL2 had a significant predictive 

value for chemotherapy response 
in univariate analysis. P27 KIP1 

expression was the only significant 
predictor of chemotherapy 

response in multivariate analysis 
(P=0.015).
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(Malgaonkar et 
al., 2016)99

Retrospective case 
control pathology 

slides

19 Pleomorphic 
Adenoma, 8 

Mucoepidermoid 
Carcinoma and 

7 Adenoid Cystic 
Carcinoma

Random selection. Single 
Centre, Saudi Arabia. P27 KIP1

52.6% of pleomorphic adenoma 
cases, 25% of mucoepidermoid 
carcinoma cases and only 14.2% 

of adenoid cystic carcinoma 
cases showed strong expression 

suggesting variable p27 KIP1 
expression in both malignant 

neoplasms.

(Khabaz et al., 
2016)100

Retrospective case 
control pathology 

slides

124 Bladder Cancer 
and 24 Normal 
Bladder Tissue

Random selection. Single 
Centre, Saudi Arabia. Cyclin D1

Strong cyclin D1 
immunohistochemical staining 

has been significantly linked with 
low grades (P=0.001), low stages 

(P=0.005). Cyclin D1 maybe a 
valuable tissue biomarker for 

presaging grade, stage, and poor 
prognosis in bladder cancer.

(Dhingra et al., 
2017)101

Retrospective case 
control pathology 

slides

48 Head and Neck 
Squamous Cell 

Carcinoma (HNSCC)

Random selection. Single 
Centre, India. Cyclin D1

A significant association was seen 
between Cyclin D1 expression with 
tumour stage and with lymph node 

metastasis but not with grade.

(Barić et al., 
2017)102

Retrospective case 
control pathology 

slides

70 Papillary Thyroid 
Microcarcinoma

Random selection. Single 
Centre, Croatia.

Cyclin D1, 
P27 KIP1 and 

RET

Cyclin D1 and RET expression is 
not crucial for the development 
of metastases in lymph nodes. 

In contrast, p27 KIP1 expression is 
significantly associated with lymph 

node metastasis.

(Patel et al., 
2017)103

Retrospective case 
control pathology 

slides

30 Oral Squamous 
Cell Carcinoma and 

30 Leukoplakia 

Random selection. Single 
Centre, India.

Cyclin D1 
and P63

The overall expression of cyclin 
D1 and p63 correlated with tumor 
differentiation, poor histological 

grades, from well-differentiated to 
poorly-differentiated SCC and the 

severity of leukoplakia.

(Guan et al., 
2018)104

Retrospective case 
control pathology 

slides

10 Normal 
Mucosa, 12 Mild to 
Moderate Epithelial 

Dysplasia, and 11 
Oral Squamous Cell 

Carcinoma 

Random selection. Single 
Centre, Dunedin, New 

Zealand

Cyclin D1 
and P27KIP1

A significant increase in expression 
of cyclin D1 and a decrease in 

expression of p27KIP1 proteins were 
observed in oral epithelial dysplasia 

and less differentiated OSCC. The 
characteristic expression of both 

cyclin D1 and p27KIP1 correlate 
with the grade of oral epithelial 
dysplasia and degree of OSCC 

differentiation.

(Ramos-Garcia et 
al., 2018)105

Retrospective case 
control pathology 

slides

69 Oral Squamous 
Cell Carcinoma 

Random selection. Single 
Centre, Spain.

Cyclin D1 
and Ki-67

Cytoplasmic cyclin D1 expression 
was associated with advanced 

tumor stage, poor differentiation, 
elevated Ki-67 expression, and 

the presence of invasive cell 
morphology, indicators of a poor 

prognosis.

(Filipits et al., 
2018)106

Retrospective case 
control pathology 

slides

862 Early Breast 
Cancer

Random selection. 
Matched for 

Trastuzumab treatment. 
Multiple Centres. 
Austria, Canada, 

Germany, Australia and 
Greece.

TOP2A, Ki67, 
Cyclin D1 

and P27KIP1

A significant interaction was 
detected between p27 KIP1 and 

treatment (p=0.0049). Trastuzumab 
effect was significant in the p27
KIP1 low subgroup (p<0.001). No 

trastuzumab effect was observed in 
the p27 KIP1 high (p=0.89).
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glycogen synthase kinase-3 beta (GSK-3ß)14. On the other 
hand, GSK-3ß might phosphorylate cyclin D1 protein in the 
cytoplasm, preventing its association with protein required 
for nuclear import14. However, overexpression of canonical 
cyclin D1 protein alone is not sufficient to induce cancer 
transformation115,116.

It has been suggested that cyclin D1 is a multifaceted 
regulator that exists in two distinct isoforms, cyclin D1a 
and D1b. Cyclin D1a protein is rarely overexpressed in 
cancers, because it can be phosphorylated by GSK-3ß117. 
However, cyclin D1b protein retains the ability to bind to 
and active CDK4, but the cyclin D1b protein is refractory to 
GSK-3ß nuclear export, and is thus, constitutively nuclear14. 
Expression of cyclin D1 mutant, cyclin D1b protein, which 
is not subject to GSK-3ß-dependent redistribution and 
remains in the nucleus during the cell cycle suggesting that 
deregulation of cyclin D1 nuclear export results in increased 
cyclin D1 oncogenic activity14,115. In addition, p27KIP1 protein 
levels are reduced in cyclin D1b-expressing cells and that 
p27KIP1 binds cyclin D1b protein relatively poorly offers a 
possible explanation for why production of this isoform 
may be associated with increased cancer risk, based on the 
ability of cyclin D1b protein to evade restraint by p27KIP1 as 
compared with cyclin D1a protein118. Therefore, expression 
of a non-phosphorylatable cyclin D1b protein may be 
sufficient to induce cell transformation115. 

Furthermore, it has been suggested that cyclin D1a may 
merely be a marker of increased proliferation in cancer cells, 
but it may represent a key driver of oncogenesis in those 
who express cyclin D1b as well. Therefore, cyclin D1b may 
be the oncogenic mechanism that allows overexpression 
of cyclin D1a to function in an oncogenic capacity119. These 
studies and observations suggest that overexpression cyclin 
D1b and/or cyclin D1a can lead to strong nuclear cyclin D1 
staining in OSCC cells. Finally, cyclin D1a retains the ability 
to bind to GSK-3ß and therefore it can be transported from 
nucleus to cytoplasm118. However, with a reduction in 
p27KIP1 protein expression, cyclin D1a cannot be degraded 
in OSCC cells, therefore a strong cytoplasmic staining was 
observed in this study. Perhaps these could explain why we 
could observe strong nuclear and cytoplasmic cyclin D1 
staining in OSCC specimen.

CONCLUSION
The mechanism of action of cyclins and cyclin-

dependent kinases were discussed in this article. Cyclin D1 
and P27KIP1 have been identified as important regulators of 
cell cycle. The consensus amongst different research studies 
in literature is that cyclin D1 protein overexpression is 
associated with epithelial dysplasia and tumor progression. 
On the contrary, P27KIP1 protein expression is decreased 
in cases with epithelial dysplasia and less differentiated 
grades of tumors. Therefore, both markers could be used as 

predictors for tumors’ aggressiveness, prognosis, response 
to treatment and survival rates.
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