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ABSTRACT

Since their discovery about fifteen years ago, neutrophil extracellular traps 
(NETs) have been recognized as an intrinsic part of vertebrate innate immunity 
and inflammatory response. Consisting of entangled strands of extracellular 
DNA decorated with histones, elastase, myeloperoxidase and other proteins, 
NETs entrap and kill pathogens, but are increasingly also found to contribute 
to acute and chronic inflammatory disease due to their toxicity to host cell 
and autoimmunity induction. Chronic obstructive pulmonary disease (COPD) 
turned out to be among the major disorders involving overshooting formation 
of NETs and associated adverse effect. In the present review, we summarize 
the progress in knowledge on the role of NETs in COPD pathology made since 
our first reports on this subject. We highlight recent substantial advances and 
discuss possible cause-and-effect relationships, connections with common 
comorbidities and interactions with drugs, also to illustrate the importance of 
NETs as a future diagnostic tool and target for new medication strategies.
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COPD is a progressive inflammatory airway disease, usually 
following long-term exposure to environmental insults. The main 
causal factor for developing COPD is inhaled tobacco smoke1. 
COPD affects around 10% of the adult population in industrialized 
countries2 and has substantial impact on the quality of life and life 
expectancy3. It is the third leading cause of death on the global scale4 
and the sixth leading cause of death in countries with high socio-
demographic index5. The disease varies in clinical presentation, 
often involving recurrent bacterial infection, massive neutrophil 
infiltration, and emphysematous alveolar wall destruction6. COPD 
is frequently still characterised into distinct ‘phenotypes’ based 
on varying criteria7–9 (caveats defined by Agusti10). In many cases, 
periods of stable condition alternate with episodes of worsening 
(exacerbations), leading to increasing small airway obstruction and 
lung function impairment. Lung function decline is also a key basis 
of disease assessment according to international guidelines11. 

Extracellular traps (ETs) consist of entangled threads of DNA 
with dimensions down to 2 nm, associated with histones, elastase, 
myeloperoxidase (MPO) and other proteins that are antimicrobially 
effective, but also potentially cytotoxic12,13. ET formation (ETosis) 
by phagocytes is an intrinsic part of vertebrate innate pathogen 
defense and inflammatory response12. In humans, ETs are most 
frequently formed by neutrophils, then being abbreviated as NETs. 
Evidence on the existence of NETs is quite recent, first traces 
(although not explicitly designated) dating back to 199614, followed 
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by a comprehensive description not until 200415. Since 
then, NET formation (NETosis) has turned out to be a 
versatile and multifaceted process with diverging signaling 
pathways and morphological execution12,16,17. NETosis is 
induced by a variety of host- or pathogen-derived molecular 
signals including chemokines such as inlerleukin-8 (IL-8), 
tumour necrosis factor alpha (TNFα), lipopolysaccharids, 
N-formylmethionyl-leucyl-phenylalanine (fMLP) and
antineutrophil cytoplasmic antibodies (ANCAs), but also
by calcium ionophores18,19 and pharmacological agents
such as phorbol-12-myristate-13-acetate (PMA)12,15 and
nicotine20,21. Some variants of NETosis including those
assumed to be modifications of the autophagy pathway
depend on reactive oxygen species (ROS) which may act
on the process from both inside and outside the cell22–24.
The main source of ROS involved in NETosis pathways
are most probably subtypes of NADPH oxidase (Nox), but
involvement of ROS from other sources (e.g. mitochondrial
oxphos complexes, catalytic activity of myeloperoxidase,
and nitric oxide synthase) is also proven25–29. ROS-
independent NETosis is mediated by calcium ionophores19

and uric acid30. Transcriptome analyses have shown that
DNA transcription at multiple chromosome loci during
chromatin decondensation is a general feature of NETosis
and occurs faster in the ROS-independent form than in
the ROS/Nox-dependent form31. However, LPS- and PMA-
induced NETs have been shown not to require protein
translation for their formation, all necessary factors
being already contained in the differentiated neutrophils
emerging from bone marrow32.

Upon mitogenic stimulation and independent of ROS, 
NET-forming neutrophils were shown to employ the 
cell cycle kinases CDK4/6 for an incomplete activation 
of cell cycle reactions advancing until nuclear envelope 
breakdown33. 

Before this background, nuclear chromatin is 
increasingly placed in a dual assignment, with a fully-
fledged second function in immunity that combines 
direct anti-pathogen action with a prominent alerting 
role via activation of DNA receptors such as Toll-like 
receptor(TLR)-934.

The best described form of NETosis releases DNA 
from nuclear chromatin and leads to cell death12,35. 
Chromatin decondensation depending on histone 
citrullination by peptidyl arginine deiminase 4 (PAD4)36,37 
is commonly regarded as a key feature of this type and 
used as an immunodiagnostic tool. Together with nuclear 
swelling, loss of intracellular organization, membrane 
rupture and extrusion of cell content, this constitutes 
a sequential morphological pattern also referred to as 
‘NETotic cascade’12,38. Caveats resulting from recent re-
evaluation of PAD-mediated citrullination24 require further 
consideration. Other mechanisms have been shown 

to leave NET-forming cells viable, and may also utilise 
mitochondrial DNA16,39.

Since their discovery15, NETs have been found to act in a 
fragile balance between beneficial and harmful. On the one 
hand, they aid the entrapment and removal of prokaryotic 
and eukaryotic pathogens40 (Figure 1) and are also formed 
during viral infections41. On the other hand, NETs have 
been identified as toxic to host cells42, contributors to organ 
failure (e.g by interaction with platelets43), and potent 
inductors of autoimmunity44. Their formation in excess 
or in the wrong place, or their insufficient clearance, was 
found to be highly associated with severe acute illness 
and chronic inflammation45,46. This applies particularly to 
airway diseases such as allergic asthma47, cystic fibrosis 
(CF)48 and COPD.

Just like with CF, COPD had been a long-standing 
candidate for NETosis-mediated negative effects due 
to association with bacterial and viral infection49,50 and 
neutrophil infiltration6. Previous work from our lab using 
a combination of electron microscopy, fluorescence light 
microscopy and CLSM image-based morphometry has for 
the first time confirmed the presence of large amounts of 
NETs in the sputa of patients with exacerbated COPD. NET 
abundance was found to correlate with the degree of airflow 
limitation as measured by forced expiratory volume in one 
second (FEV1). We also found elevated NETosis in stable 
COPD and in smokers with still normal lung function13,51. 
These findings have since been substantially confirmed and 
expanded by the work of other groups: Extracellular DNA 
levels and content of NET associated protein in sputum 
has been shown to be significantly higher in COPD patients 
than in controls52,53, and spontaneous NET formation of 
neutrophils isolated from COPD sputum was found to be 
increased52. Interestingly, peripheral blood neutrophils of 
exacerbating COPD patients were found to diverge from 

Figure 1: Scanning electron micrograph of in-vitro induced NETs 
entrapping Pseudomonas bacteria (Image: Astrid Obermayer, 
Salzburg). 
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the extent to which histone co-aggregation with pentraxin 
3 (PTX3), a further protein component of NETs, is able 
to protect COPD airway epithelia from histone-mediated 
cytotoxicity66. 

(ii) Neutrophil elastase (NE). The serine protease NE
(elastase 2) is another protein that is usually abundantly 
present in NETs. It has been attributed with a crucial role 
in emphysema development in animal model studies and 
human COPD already before NETs were first identified67. 
Over the years, a variety of animal models of emphysema 
induction by elastase instillation to the airways have 
been developed and tested, alone or in conjunction with 
other agents such as cigarette smoke, for suitability to 
mimic emphysema development at temporal, histological 
and molecular levels68–70. Regulatory pathways through 
which NE contributes to emphysema development 
are multifactorial and interdigitated, involving matrix 
metalloproteinases (MMPs), AMP-activated protein 
kinase (AMPK), α1,6-fucosyltransferase (Fut8), Wnt3a/b-
catenin, and nuclear factor erythroid-2 related factor-2 
(Nrf2), among others71,72. A relation to NADPH oxidase 2 
(Nox)-dependent ROS production72,73 and ROS-mediated 
regulation of neutrophil interleukin-1 beta (IL-1β) secretion 
is obvious, differential coupling to pathways regulating 
autophagy and apoptosis seems probable74,75. However, it 
is unclear how all this contributes to the interdependency 
between NETosis and emphysema in COPD, – all the more 
so because the origin of extracellular NE may be diverse 
(see topic iii). An insufficiently explained side aspect in this 
context is also whether COPD emphysema and idiopathic 
pulmonary fibrosis (IPF) are in fact final conditions 
resulting from divergent derangement of a similar set of 
signalling pathways under similar noxious influence76.

(iii) Origin of neutrophil serine proteases (NSPs). Even
when found associated with NETs, neutrophil proteases 
(in addition to NE also cathepsin G and proteinase 
377) may derive from NETosis-independent exocytosis
(degranulation) induced by various factors78,79, including
macrolid antibiotics80. The contribution of NETosis-
independent NSPs in COPD-related tissue damage may be
substantial, not least due to secondary effects such as NSP-
induced increased activation of proinflammatory cytokines
(e.g. IL-1a, IL-36)81,82.

(iv) ETs formed by eosinophils (EETs) and macrophages
(METs). Eosinophilic inflammation is a common phenotype 
in COPD83,84. Eosinophils have been shown to undergo 
at least two types of EET formation: cell death ETosis 
that cytolytically releases eosinophil granules85, and a 
specialised type of ETosis during which mitochondrial DNA 
is extruded in a catapult-like manner86. Recent research 
further strengthens a possible role of eosinophils in the 
pathophysiology of COPD phenotypes, notably already in 
the initial phase, and irrespective of whether patients quit 

those of stable COPD patients and controls in that they 
showed decreased in vitro NET formation in response 
to inflammatory stimuli, even though the plasma of the 
exacerbators contained elevated levels of extracellular 
DNA54. The culminating work to date is perhaps the 
comprehensive study of Dicker et al55. Applying a variety 
of methods to measure NET content in COPD sputa, these 
authors show a significant association between sputum NET 
concentrations and various parameters of disease severity. 
By presenting new assays for facilitated non-microscopy 
based quantification of NETs, they made an important step 
further toward making sputum NET content usable as a 
diagnostic tool applicable in routine laboratory analysis. By 
showing that sputum NET concentrations correlate with a 
decreased microbiome diversity, and that the presence of 
NETs reduces airway neutrophil phagocytosis, scientific 
progress was also achieved in testing the potential role 
of microbiota in this context. Other recent work using in 
vitro and ex vivo test systems has further corroborated 
the promotive role of cigarette smoke on ET formation by 
neutrophils and macrophages (METs), accompanied by the 
release of NE and matrix metalloproteinases (MMPs), and 
initiation of T-cell-mediated immune response56,57.

All this provides substantial support to the hypothesis 
that excess NET formation together with an unfavourable 
change in the phagocytosis/NETosis-balance58 impairs 
full clearance of bacterial infections in COPD airways, thus 
driving a self-perpetuating cycle of inflammation and NET 
formation, as already shown for cystic fibrosis59.

The increasing amount of data on the subject (evidence 
also comprehensively reviewed by Liu et al.60) encourages 
to further intensify research effort on the role of NETs in 
COPD, specifically to establish a more complete picture 
of the cause-and-effect relationships between the various 
aspects of the disease. Specific topics deserving to be 
further pursued concern molecular and biochemical 
interactions of intrinsic NETosis factors with the tissue 
environment (topics i – iv), and interrelations with 
individual circumstances of the disease, therapy and life 
cycle (topics v – viii).

(i) Histones. Core histones are known to account for
70% of all NET-associated proteins61, and nucleosome 
histone complexes are major structural constituents of 
fine NET threads13. Together with MPO, extracellular 
histones have been identified as main factors in NET-
mediated cytotoxicity62. Signalling pathways involve Toll-
like receptors, complement molecules, membrane-bound 
phospholipids, and proinflammatory chemokine release 
mediated by MyD88, NFκB, and inflammasomes63,64. 
Citrullinated histone H3 was found to evoke endothelial 
barrier dysfunction via opening of adherens junctions and 
promotion of stress fibre formation in the cytoskeleton65. 
The relevance of all this is still unproven for COPD, as is 
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smoking, with EETosis cell debris acting as a promoter of 
uncontrolled NETosis8. Recent work additionally suggests 
a relevant contribution of METs in COPD emphysema, 
especially under the influence of cigarette smoke56.

(v) Longitudinal relations. The information that NETosis
intensity in COPD correlates with exacerbation derives 
mainly from cross sectional studies51,55, and provide no 
evidence on the course of NET levels through the sequence 
of exacerbations, their regressions, and intermittent stable 
phases in the individual patient. Accordingly, it is presently 
still impossible to discern whether increased NETosis is a 
result of, or a reason for exacerbations or whether NETs 
levels have an influence on the general progression of the 
disease.

(vi) Comorbidities. COPD is in many cases associated
with comorbidities including lung cancer and other cancers, 
cardiovascular disease and diabetes. The crucial connecting 
factor appears to be systemic inflammation which is 
inherent to COPD and provides a promoting environment 
for various comorbidities87. In this context, ample evidence 
suggests that particularly the role of NETs and NET-
components is worthy further examination. Deregulated 
inflammation with aberrant release of cytokines and ROS is 
known to generate a carcinogenic milieu in the lungs88, and 
NETs have been shown to be promotors of a tumorigenic 
microenvironment89. A similar association with NETosis 
has been established for cardiovascular disease including 
acute coronary syndrome46,90 and for diabetes91,92.

(vii) Drugs and stimulants. Influence on COPD NETosis
by adjuvant medication and stimulants is as yet unexplored. 
Candidate substances among medical drugs include 
N-acetylcysteine (applied for routine mucolytic treatment)
and phosphodiesterase (PDE4) inhibitors. In vitro data
show that N-acetylcysteine is able to reduce the ability of
human neutrophils to form NETs under low ROS levels93.
Implications under the high and heterogeneous ROS
levels in COPD airways94 are presently unexplored. PDE4
inhibitors are increasingly established in COPD medication
to improve lung function and reduce the likelihood of
exacerbations. Although there is as yet no direct evidence
that PDE4 inhibitors affect NETosis, work on prostaglandin
(PGE2) has shown that NETosis may be downregulated by
cyclic adenosine monophosphate (cAMP). There is still
no enquiry as to how PDE4 inhibitor-mediated elevated
intracellular cAMP exerts influence on airway neutrophil
NETosis. A further open issue in this context is NETosis
promotion by nicotine20,21 in persistently smoking COPD
subjects.

(viii) Influence of age. COPD-associated NETosis is linked
to age-related phenomena in at least two ways: On the one 
hand, NETosis-driven chronic low-grade inflammation and 
high ROS levels accelerate tissue senescence via various 

molecular mechanisms also entailing depletion of precursor 
cells7,95,96. This designates NETosis as a major factor in lung 
‘inflammaging’97,98, and supports the classification of COPD 
as a condition of accelerated/abnormal lung aging7,99. On 
the other hand, advancing age of both, the individual cells 
and the organism, modulates the neutrophils’ capacity to 
release NETs. This likely alters the balance of beneficial and 
detrimental effects of NETosis throughout the course of life 
in a complex and therapeutically relevant manner100.

In conclusion, the research in the wake of our first 
publications on the subject 13,51 has to a large extent 
confirmed the hypothesis that NETosis levels in COPD 
correlate with disease severity, thus further highlighting the 
relevance of COPD-related NETosis as a promising target of 
diagnose and new medication strategies. Data available to 
date provide sound encouragement for several promising 
lines of research to be followed in the immediate future in 
order to improve the overall clinical outcome of the disease. 
The restricted scope of clinical trials on human patients 
highlights the need to improve and standardise preclinical 
in vitro and animal models for study of the NETosis-COPD 
relationship. This encourages effort to better adapt ex vivo-
in vitro smoke models of NETosis induction57,101, and to 
standardise the diversity of animal COPD models (e.g.102,103) 
to facilitate representative validation of biomarkers and 
testing of therapy targets and new therapeutic agents. 
Refined in vitro and animal models may help to assess the 
effectiveness and side effects of NETosis inhibitors104–106. 
Prominently, knowledge about cooperative signalling in 
neutrophil recruitment and the as yet limited efficacy of 
cytokine blocking therapies in COPD107 may be expanded. 
Directions to be further followed are pointed by work 
comparing dual CXC-motiv-chemokine receptor 1/2 
(CXCR1/2) inhibition vs. selective blocking of CXCR2108, or 
cooperative P-selectin glycoprotein ligand-1 (PSGL-1) and 
CXCR2 signaling in deep vein thrombosis109.
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